531 research outputs found

    Free Energy of a Hot Gluon Plasma and hard-thermal-loop Resummation

    Get PDF
    In this talk I briefly discuss the thermodynamics of the quark-gluon plasma The calculation of the free energy of a hot gluon plasma to leading order in hard-thermal-loop perturbation theory is outlined. The HTL free energy is compared with the weak-coupling expansion and lattice results.Comment: 4 pages, 2 figures, LaTeX. Talk given at 15th International Conference on Particle and Nuclei (PANIC 99), Uppsala, Sweden, 10-16 June 199

    The Massive Thermal Basketball Diagram

    Get PDF
    The "basketball diagram" is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a phi^4 interaction to three-loop order.Comment: 19 pages, 3 figure

    Compatibilities of YBa2Cu3O(9-delta) type phase in quintenary systems Y-Ba-Cu-O-X (impurity)

    Get PDF
    Isothermal phase diagrams at various oxygen pressures were studied by powder diffraction and chemical analytical methods. The components, Y, Ba, Cu, and O (specifically O2, O2-, and O2 sup 2-) are treated, together with C (specifically CO2 and CO2 sup 2-), alkaline metals, Mg, alkaline earths, Sc, 3-d and 4-f elements. Effects of the substitutions at the structural sites of YBa2Cu3O(9-delta) on T sub c are discussed with respect to changes in crystallochemical characteristics of the substituted phase and to the nature of the substituents

    Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''

    Full text link
    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by γ=cg2ln(1/g)T\gamma=c g^2\ln(1/g)T, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be cancelled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page

    Screened Perturbation Theory to Three Loops

    Full text link
    The thermal physics of a massless scalar field with a phi^4 interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast to the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.Comment: 30 pages, 10 figure

    Solution to the 3-Loop Φ\Phi-Derivable Approximation for Massless Scalar Thermodynamics

    Get PDF
    We develop a systematic method for solving the 3-loop Φ\Phi-derivable approximation to the thermodynamics of the massless ϕ4\phi^4 field theory. The method involves expanding sum-integrals in powers of g2g^2 and m/T, where g is the coupling constant, m is a variational mass parameter, and T is the temperature. The problem is reduced to one with the single variational parameter m by solving the variational equations order-by-order in g2g^2 and m/T. At the variational point, there are ultraviolet divergences of order g6g^6 that cannot be removed by any renormalization of the coupling constant. We define a finite thermodynamic potential by truncating at 5th5^{th} order in g and m/T. The associated thermodynamic functions seem to be perturbatively stable and insensitive to variations in the renormalization scale.Comment: 57 pages, 10 figure

    Kinetic Equations for Longwavelength Excitations of the Quark-Gluon Plasma

    Get PDF
    We show that longwavelength excitations of the quark-gluon plasma are described by simple kinetic equations which represent the exact equations of motion at leading order in gg. Properties of the so-called ``hard thermal loops'', i.e. the dominant contributions to amplitudes with soft external lines, find in this approach a natural explanation. In particular, their generating functional appears here as the effective action describing long wavelength excitations of the plasma.Comment: January 8, 1993; 8 pages; SPhT/93-

    3-dimensional Rules for Finite-Temperature Loops

    Get PDF
    We present simple diagrammatic rules to write down Euclidean n-point functions at finite temperature directly in terms of 3-dimensional momentum integrals, without ever performing a single Matsubara sum. The rules can be understood as describing the interaction of the external particles with those of the thermal bath.Comment: 12 pages, 4 figures, to appear in Physics Letters
    corecore